
There is no conflict between causality and randomness or between determinism and
probability if we agree, as we must, that scientific theories are not discoveries  of the
laws of nature but rather inventions of the human mind.  Their consequences are
presented in deterministic form if we examine the results of a single trial;  they are
presented as probabilistic statements if we are interested in averages of many trials.
In both cases, all statements are qualified.  In the first case, the uncertainties are of
the form “with certain errors and in certain ranges of the relevant parameters”;  in
the second, “with a high degree of certainty if the number of trials is large enough.”

- Athanasios Papoulis

Chapter 4

Multiscale Image Statistics

When digital images are considered as arrays of observations made of an underlying
scene, the vocabulary and calculus of statistics may be applied to their analysis.  If an
image is subject to noise in pixel measurement, it should be presented within the context
of either known or computed properties of the pixel values.  These properties include the
sample size or raster resolution and statistics such as the variance of the additive noise.

This is an introduction to the concept of multiscale image statistics.  In particular, the
next sections describe the generation of central moments of the local probability density
of intensity values.  A particular model of images as composed of piecewise regions
having similar statistical properties (having similar probability distributions of intensity)
is assumed for the construction of multiscale statistics.  This model of images as samples
of piecewise ergodic stochastic processes is presented after a brief introduction to provide
a foundation for the rest of the chapter.

Later sections present the construction of multiscale central moments of intensity.  An
earlier section in Chapter 2 describes the use of central moments to reconstruct the
probability density function uniquely.  The approach presented here outlines the
generation of the central moments of the local intensity histogram of any arbitrary order.
Later sections provide examples of these local central moments up to the fourth order.
Properties of these moments are explained, and their behavior is compared with other
common image processing operators.  The multiscale central moments are generalized to
images of two dimensions as well as multivalued images containing two values per pixel.

Applications of multiscale central moments are included.  In particular, the use of
these measurements in the selection of control parameters in nonlinear diffusion systems
for image processing are shown.

4.1.  Background and Introduction

Statistical pattern recognition is a discipline with a long and well established history.
The literature is mature, and several texts have been written describing image analysis
through the statistical methods.  Filtering methods based on local neighborhood statistics
such as median filtering can be found throughout the literature.  Image contrast
enhancement techniques based on histogram equalization have also been explored and are
in use in medical as well as other production environments [Pizer 1987].  Numerous
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methods for performing segmentation and classification of images based on statistical
pattern recognition are well documented in various texts [e.g., Duda 1974].  Statistically
based relaxation filters founded on the theory of Markov processes (Markov Random
Fields) [Geman 1984, Chellappa 1993, Jain 1985] as well as relaxation strategies based
on expectation-maximization methods [Dempster 1980] also have a long history.  Geiger
and Yuille provide a framework for comparing these and other segmentation strategies,
including nonlinear diffusion discussed later in this chapter, in their survey of the
common threads shared by different algorithms [Geiger 1991].

Typically, statistical methods in image processing employ the histogram of the image
or some other means of representing the probability density function of the intensity
values.  This representation is most often computed at the maximum outer scale of the
image.  That is, the histograms, mixture models, or probability distribution
approximations are computed across the whole image, including all pixel values equally.

Image-wide probability density functions are commonly approximated as a Gaussian
or linear combinations of multiple Gaussians.  A maximum likelihood algorithm is
usually then applied to classify individual pixel observations.  Such methods seldom
include local spatial trends or the geometry of the image as part of the statistical classifier.
Maximum likelihood classifiers often employ image geometry in a post-process
connectivity filter or, in the case of expectation-maximization methods, the classifier
iterates between the maximum likelihood calculation and connectivity filtering.

Exceptions to the generalization that statistics are computed at the outer scale of the
image include the contrast enhancement method of adaptive histogram equalization.
Adaptive histogram equalization (or AHE) and its derivatives (Contrast limited AHE or
CLAHE, and Sharpened AHE or SHAHE) construct local histograms of image intensity
and compute new image values that generate an equalized local probability distribution.
[Cromartie 1995].  Early algorithms for AHE included calculating histograms over non-
overlapping rectangular neighborhoods and interpolation between equalized values.
[Pizer 1987].  The choice of neighborhood operator was originally made on the basis of
computational efficiency.

Other exceptions include Markov random fields and sigma filters.  Markov random
fields (MRFs) filters apply maximum likelihood estimators over a local neighborhood
[Geman 1984].  Techniques using sigma filtering also compute nonlinear smoothing
functions based on a local sampling window [Lee 1983].  Local statistics within a well
defined neighborhood are computed and the central pixel value is adjusted according to
some function of those statistics.  Questions often arise over the priors used in sigma
filters and smoothing based on Markov random fields.  Other questions arise over the
selection of the neighborhood function.

This chapter addresses the construction of robust statistics over a principled
neighborhood function.  The values that are proposed are local means and local central
moments of intensity.
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4.2.  Images and Stochastic Processes

This work assumes a particular model for images.  As with most statistical pattern
recognition systems, this research is based on the assumption that the input signal follows
a Gibbs distribution.  Stated loosely, a Gibbs assumption states that the value for the
intensity at a particular location has compact local support.  This research restates these
assumptions using the language of stochastic processes (defined below).  Restating and
further illuminating this common assumption requires the following background material.

4.2.1.  Stochastic Processes

Chapter 2 defines an image to be a representation of some scene.  The recording of the
information within the scene is always subject to error of some kind (e.g., approximation
error, measurement error, noise, discretization error, etc.)  If the measurement of the
scene is repeated, an identical image is not always acquired.  However, there is usually a
strong likelihood that the corresponding pixel values within two images of the same scene
will have similar intensities.

The study of stochastic processes enables the quantification and analysis of the
predictability of image measurement, the likelihood of obtaining similar images upon
repeated acquisition.  A more complete version of the following discussion can be found
in Papoulis’ introduction to random variables and stochastic processes [Papoulis 1991].
What is presented here is his organization modified from a time-based structure to one
based on spatial location, transferring it to the framework of image processing.

A stochastic process F is a mapping of locations in space to random variables.
Representations for F include the function notation of F(p,ξ) which represents the ξth
sample of the random variable located at position p.  This notation is often abbreviated as
F(p) when individual observations are not of interest, but rather the random variable
itself.  Formally,

Definition:  A stochastic process  F (alternatively F(p,ξ) or F(p)) is a continuous

mapping F : Rn →  Ξ, where Ξ is a random variable.  The domain of F is the set of

all points p of an n-dimensional space: p ∈ Rn.  The range of F is a random
variable whose probability distribution function is

F(x,p) = P{F(p) � x}

F  is a function of the spatial variable p, and it gives the probability of the event
{F(p) � x} consisting of all outcomes ξ such that, at the specific location p, the
samples F(p,ξ) of F do not exceed the value of x.  The corresponding probability
density function is f(x,p) such that

f(x,p) =
∂F(x,p)

∂x

The definition given above describes F(p,ξ) as a continuous-space process since the

domain of F is continuous over Rn.  If F is a mapping from the space of integers (i.e.,



52                                                             Image Geometry Through Multiscale Statistics

p ∈ Zn), then F is a discrete-space  process.  If the values of F(p,ξ) are countable, then F
is a discrete-state  process; otherwise it is described as a continuous-state  process.

4.2.2.  Images as  Samples

Paraphrasing Papoulis, F(p,ξ) has four interpretations:

1. F(p,ξ) is an ensemble of functions with p and ξ as variables.

2. It is a single function F(p0,ξ), where p0 is a constant, and ξ is allowed to vary.  In this
case F(p0,ξ) is called the state of the process at p0.

3. F(p,ξ0) is a single function (or a sample of the given process) where ξ0 is fixed, and p
is allowed to vary.

4. If ξ0 and p0 are constant, F(p0,ξ0) is a scalar value.

Using the interpretation 3 above, the process of capturing the intensity values of a scene
to form a digital image I(p) can be considered to be a sample from a discrete-space
discrete-state stochastic process F(p).  This interpretation assigns I(p) = F(p,ξ0), for some
ξ0, as a family or ensemble of samples one from each pixel location p.

This view of images is a natural one.  Consider the acquisition of still images of a
stationary scene using a video camera.  If there is noise in the input signal, two images
acquired at slightly different times  I0(p) = F(p, ξ0), and I1(p) = F(p, ξ1), while not
identical, would be subject to the same noise processes.  Optical distortions, manifesting
themselves as spatial functions, would exhibit themselves identically in each image.
Color shifts, variable sensitivity of the detector grid, radio frequency noise and amplifier
noise would not generate the same values on repeated sampling, but would follow the
same behavior for each location p.

Given an ensemble of images of the same scene {I0(p), I1(p), ... In(p)}, (equivalently
a large set of samples {F(p, ξ0), F(p,ξ1), ... , F(p, ξn)} of process F) where n is a large
number, the expected, average or mean intensity value M(I(p)) of pixel p can be
estimated using the following calculation.

µ I(p) = µF(p) = F(p) ≈
1

n
Ii (p)

i=1

n

∑ =
1

n
F(p,ξ i )

i=1

n

∑ (4-1)

Note the natural association between the expected value or mean of the stochastic process
and the mean of the sample set of images.  The variance of the sample set of images
V(I(p)) can be calculated in a similar fashion, with a corresponding relationship to the
variance of F.

µ I
(2)(p) = µF

(2)(p) ≈
1

n
Ii (p) − µ I(p)( )2

i=1

n

∑ =
1

n
F(p,ξ i ) − µF(p)( )2

i=1

n

∑ (4-2)
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The notation µF
(2)(p) refers to the second central moment of F at location p.  The order of

the moment is indicated by the superscript value.  The parenthesized superscript denotes
that this is a central moment; that is, that this moment is calculated about the mean of F at
p.  A general form for central moments of F at p given an ensemble of samples is

µF
(k)(p) = F(p) − µF (p)( )k

=
1

n
F(p,ξ i ) − µF(p)( )k

i=1

n

∑ (4-3)

4.2.3.  Ergodicity

Stochastic processes are not functions, but mappings to random variables.  When using
real data it is not always convenient or possible to acquire sufficient samples of a single
process F(p) to generate accurate information regarding the probability density function
of the random variable for each location p.  In many real examples in image processing,
only one image is provided, not several.  If F may be assumed to be stationary, that is the
probability densities of the random elements of F are identical independent of p, it is
possible to use these assumptions or properties to perform spatial averaging in place of
averaging across many samples.  The concept of ergodicity describes these conditions
when a practitioner may trade spatial averaging for sample averaging.

Definition:  Consider the stochastic process F(x) where x ∈ R1.  A stochastic

process F(x) is said to be mean-ergodic if for some fixed sample ξ0 as d → ∞ the
following condition holds

w(τ;d)F(x - τ,ξ0)dτ
−∞

∞

∫ d→ ∞ →    µF(x) (4-4a)

w(x;d) =
0 if x ≤ − d

2

1
d if − d

2 < x ≤ d
2

0 if d
2 < x

 

 
 

  (4-4b)

where the definition of the mean value µF(x) is described in equation (4-1).

Notice that (4-4)  is equivalent to a convolution of the function F(x,ξ0 )  with a zero-
centered square pulse function of height 1

d  and width  d centered at x.

The definition of mean-ergodicity as shown above can easily be generalized to
processes of higher spatial dimensions.  The concept of ergodicity can also be generalized
from equation (4-4) to higher order central moments.  For example,

Definition:  A stochastic process F(x) (where x ∈ R1), is said to be variance-

ergodic if for some fixed sample ξ0 as a → ∞ the following condition holds

w(τ;d) F(x - τ,ξ0 ) - µF(x)( )2
dτ

−∞

∞

∫ d→∞ →    µF
(2)(x) (4-5a)
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w(x;d) =
0 if x ≤ − d

2

1
d if − d

2 < x ≤ d
2

0 if d
2 < x

 

 
 

  (4-5b)

where the definition of the second central moment µF
(2) (x) is shown in equation

(4-2).

Within the integral, the mean value term is relative to the position x, rather than to the
index of integration τ.  That is, the right value in the squared term of the integral is µF(x)
and not µF(τ).

Given these definitions of mean-ergodicity and variance-ergodicity, it can be shown
that if a process F is variance-ergodic, it must also be mean-ergodic.  The converse of this
statement, however, is not true [Papoulis 1991].

Ergodicity may be generalized to even higher moments.  If a process is ergodic in the
strict sense, increasing the spatial measurement window about a pixel of a single sample
of the process uniquely specifies the probability density function for the stochastic
process.  Further exploration of these ideas is beyond the scope of this dissertation.

If a process has a constant value for some observable moment of its distribution
across space, it can be considered to be ergodic in a weak sense.  That is, if the mean
value of a process varies across space but the variance remains constant about that mean,
then the process can be considered to be variance ergodic in the weak sense.

4.2.4.  Ergodicity and Images

If an image, which is a representation of a wider scene, is considered to be a sample of a
completely ergodic process, where “ergodic” is defined in the strict sense, then the scene
itself is of little interest since its expected brightness is constant, essentially a grey field.
The image portrays significant information about the noise in the acquisition process, but
little other information.

What about images of scenes that have varying brightness and contrast?  This section
introduces piecewise  or limited definitions of ergodicity.  This distinction and its
ramifications make the following definitions more applicable to image processing tasks.

Definition:  A process F(x) (where x ∈ R1), is piecewise mean-ergodic if it can be
partitioned into intervals such that for each interval [a,b] where a � x � b:

1
(b−a) F(τ,ξ)dτ

a

b

∫ = µF(x) + ε   where  ε → 0 as (b - a) → ∞ (4-6)

Definition:  A process F(x) (where x ∈ R1), is piecewise variance-ergodic if it can
be partitioned into intervals such that for each interval [a,b] where a � x � b:

1
(b−a) F(τ,ξ) - µF(x)( )2

dτ
a

b

∫ = µF
(2)(x) + ε   where  ε → 0 as (b - a) → ∞ (4-7)
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As in the previous definitions, definitions of higher order central moments and for higher
dimensions may be inferred from these cases.

Given a single sample I(x) = F(x,ξ0) of a piecewise ergodic process F, it is not
possible to recover either µF (x) or µF

(2) (x) completely since the partitioned intervals

limit the averaging process.  However, some reduction of the variance of the estimates of
µF (x) and µF

(2) (x) may still be achieved through spatial averaging.  If the boundaries of

the partitions are known a priori, an optimal estimate of both µF (x) and µF
(2) (x) can be

calculated from a given sample I(x).

If the boundaries of the partitions of F are not known, the problem of optimally
estimating µF (x) and µF

(2) (x) from an image sample I(x) is underspecified.  Without the

size (or scale) of the intervals, µF (x) may be estimated using equation (4-1) by varying

the interval width |b-a| for each location x and selecting an interval size based on some
criterion.  A regularizing sampling kernel is required to handle these uncertain boundary
positions and the randomness of F.  This regularization requirement is the basis for the
research presented in this chapter, the development of multiscale techniques for
estimating and evaluating the local probability densities in an image.

4.3  Multiscale Statistics

Without a priori knowledge of the boundaries and the object widths within an image,
locally adaptive multiscale statistical measurements are required to analyze the
probability distribution across an arbitrary region of an image.  This section presents
multiscale image statistics, a technique developed through this research for estimating
central moments of the probability distribution of intensities at arbitrary locations within
an image across a continuously varying range of scales.  The piecewise ergodic nature of
the image is an underlying assumption of these developments.

The definitions of mean and variance ergodicity in equations (4-4) and (4-5) imply the
measurement of central moments in a local neighborhood of varying size about a point.
Consider a set of observed values,   

˜ I (x) ⊂ R
1 , where for purposes of discussion the

location x ∈ R1, but can easily be generalized to Rn. The values of ˜ I (x) may be sampled
over a local neighborhood about a particular location x using a weighting function, ω(x),
and the convolution operation, ˜ I (x) ⊗ ω(x), where

˜ I (x) ⊗ ω(x) = ω(τ)˜ I (x − τ)dτ
− ∞

∞

∫ = ω(x − τ)˜ I (τ)dτ
− ∞

∞

∫ (4-8)

A regularizing sampling kernel is desired.  To avoid a preference in orientation or
location, the sampling function should be invariant with respect to spatial translation and
spatial rotation.  As with all probability weighting functions it is essential that

ω(τ)dτ
−∞

∞

∫ = 1.  One function that meets the above criterion is a normalized Gaussian

function.  Therefore, let
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ω(x) = G(σ, x) = 1

σ 2π
e

−
x2

2σ2

(4-9)

where the parameter σ represents the width of the sampling aperture.

4.3.1.  Multiscale Mean

Let the scale space measurement comprised of a sum of the original image intensities
weighted by a Gaussian sampling kernel be the average or expected value of ˜ I (x) over
the neighborhood defined by the aperture of size σ.  This local mean is

µ ˜ I (x | σ) = ˜ I (x);σ = ω(τ) ˜ I (x − τ)
τ = x

neighborhood (σ )

∑ = G(σ,x − τ)˜ I (τ)dτ
−∞

∞

∫ (4-10)

where ˜ I (x);σ  is read as the expected value of ˜ I (x) measured with aperture σ.  This

definition follows from the assumption that the observed values ˜ I (x)  represent a single
sample from a mean-ergodic (or piecewise mean-ergodic) stochastic process.

The effect of a multiscale statistical operator can be viewed through its response to
the input of a square pulse function.  The resulting pulse transfer function is the output of
a multiscale statistical operator acting upon a simple piecewise ergodic input signal.  A
point transfer function, the result of applying the multiscale statistical operator to a Dirac
delta function input is not defined; statistics cannot be generalized from a single sample.

For the purposes of this discussion, the assumed input signal is P(d, x), a square pulse
function centered at the origin with a spatial width of d and a height of 1/d  (See Figure
4.1.).  Note that lim

d→0
P(d,x) = δ(x).

1/d

d

Figure 4.1a.  1D square pulse function P(d, x).  Used as the input for generating pulse transfer
functions.
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Figure 4.1b.  1D square pulse functions P(1, x), P(2, x), P(4, x), P(8, x).  From left to right:
d = 1, d = 2, d = 4, d = 8;  lim

d→0
P(d,x) = δ(x) .

The relationship between object width and the aperture of the multiscale statistical
operator can be seen by applying the statistical mean operator at a variety of scales.
Alternately, a statistical operator may be applied to square pulse inputs of various widths.
Throughout this chapter the relationship between object and operator scale of the
multiscale mean and higher order multiscale central moment operators will be presented
by applying the operator to square pulse inputs of varying widths.  An analysis of the
relationship between object scale and operator aperture is found in Section 4.5.

The 1D pulse transfer function for the multiscale mean operation is described in the
following equation and shown in Figure 4.2 for varying values of d.

µP(d,x)(x|σ) = P(d,x) ⊗ G(σ,x) = 1
2d erf

x+ d
2

σ 2
 
 

 
 −

1
2d erf

x− d
2

σ 2
 
 

 
 (4-11)

erf(x) is the standard error function, erf (x) = G(1, τ)dτ
−∞

x

∫ .  As the scale of the operator

decreases relative to the size of the object or pulse, it provides a better approximation to
the original input signal.

   
Figure 4.2.  1D Pulse transfer function for the multiscale mean operator µP(d,x)(x|σ)  for

σ = 1. From left to right: d = 1, d = 2, d = 4, d = 8.  The dashed lines represent the input pulse
function P(d,x).  Note the difference in spatial and intensity ranges in each plot.

4.3.2.  Multiscale Variance

It is straightforward to calculate a value for the local variance over the neighborhood
specified by the scale parameter σ.  Equation (4-12) describes the local variance of
intensity about a point x at scale σ.
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µ ˜ I 

(2) (x | σ) = ˜ I (x) − µ ˜ I 
(x | σ)( )2

; σ

= G(σ,x − τ) ˜ I (τ) − µ ˜ I 
(x | σ)( )2

dτ
−∞

∞

∫
= G(σ,x − τ) ˜ I (τ)( )2

dτ
−∞

∞

∫ − µ ˜ I 
(x | σ)( )2

= G(σ,x) ⊗ ˜ I (x)( )2
− µ ˜ I 

(x | σ)( )2

(4-12)

The point transfer function of the local variance operator is not defined for the Dirac delta
function δ(x)  (i.e., µ δ(x)

(2) (x | σ) does not exist).  However, the multiscale variance

operation can be visually portrayed through its pulse transfer function µP (d,x)
(2) (x | σ).  The

multiscale variance of a pulse transfer function is

µP (d,x )
(2) (x | σ) = G(σ,x) ⊗ P(d,x)( )2 − G(σ,x)⊗ P(d,x)( )2

= 1
2 d2 erf x+d

2

σ 2( )− 1
2 d2 erf x− d

2

σ 2( )( )− 1
2d erf x+d

2

σ 2( )− 1
2 d erf x− d

2

σ 2( )( )2 (4-13)

Figure 4.3 shows the multiscale variance operator applied to a square pulse P(d, x) for
varying values of d.

   

Figure 4.3.  1D Pulse transfer function for the multiscale variance operator µP(d,x)
(2) (x|σ)  for

σ = 1.  From left to right: d = 1, d = 2, d = 4, d = 8.  Note the difference in spatial and
intensity ranges in each plot.

The function shown in equation (4-13) is interesting in its resemblance to the square
of the scale space gradient magnitude function (e.g., in the 1D case,
∇P(d,x | σ)

2
= ( ∂

∂x P(d, x | σ))2 = ( ∂
∂x G(σ, x) ⊗ P(d, x))2 ).  Both are invariant with

respect to rotation and translation, and both have similar responses to a given input
stimulus.  For example, Figure 4.4 portrays the variance calculation and the square of the
scale-space 1D gradient magnitude of P(d,x).
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Figure 4.4.  Comparison of the 1D Pulse transfer function for the multiscale variance operator

µP (d,x)
(2) (x | σ)  with σ = 1 to the square multiscale gradient magnitude operator.  Top row,

µP (d,x)
(2) (x | σ) .  Bottom row:  ( ∂

∂x P(d,x | σ))2
.  From left to right: d = 1, d = 2, d = 4, d =

8.  Note the difference in spatial and intensity ranges in each plot.

4.3.3.  Multiscale Skewness and Kurtosis

The third and fourth local central moments are easily calculated in a similar fashion.  The
multiscale third central moment is

µ ˜ I 

3( ) (x | σ) = G(σ, x − τ) ˜ I (τ) − µ ˜ I 
(x | σ)( )3

dτ
−∞

∞

∫
= G(σ, x − τ) ˜ I (τ)( )3

dτ
−∞

∞

∫ − 3µ ˜ I 
(x | σ) G(σ,x − τ) ˜ I (τ)( )2

dτ
−∞

∞

∫
+ 3 µ ˜ I 

(x | σ)( )2
G(σ, x − τ)I(τ)dτ

−∞

∞

∫ − µ ˜ I 
(x | σ)( )3

= G(σ, x) ⊗ ˜ I (τ)( )3
− 3µ ˜ I 

(x | σ) G(σ, x) ⊗ ˜ I (τ)( )2 
 

 
 + 2 µ ˜ I 

(x | σ)( )3

= G(σ, x) ⊗ ˜ I (τ)( )3
− 3µ ˜ I 

(x | σ)µ ˜ I 

2( ) (x | σ) − µ ˜ I 
(x | σ)( )3

(4-14)

The third central moment is demonstrated visually through its pulse transfer function
across a range of pulse widths in Figure 4.5.

   

Figure 4.5.  1D Pulse transfer function of µP (d,x)
(3) (x | σ)  with  σ = 1.  From left to right:

d = 1, d = 2, d = 4, d = 8.  Note the difference in spatial and intensity ranges in each plot.

The response of the multiscale third central moment of a square pulse µP (d,x)
(3) (x | σ) is

similar to the multiscale first derivative of a pulse stimulus.  Although the magnitude of
the responses of the two operations are often an order of magnitude apart, the
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correspondence between the shapes of the two curves is remarkable.  The two functions
are compared in Figure 4.6.

   

   

Figure 4.6. Comparison of µP (d,x)
(3) (x | σ)  with σ = 1 to ∂

∂x P(d,x | σ)  with σ = 1.  Top row,

µP (d,x)
(3) (x | σ) .  Bottom row: ∂

∂x P(d,x | σ) .  From left to right:  d = 1, d = 2, d = 4, d = 8.

Note the difference in spatial and intensity ranges in each plot.

The multiscale fourth central moment is shown and simplified in equation (4-15).

µ ˜ I 

(4) (x | σ) = G(σ, x − τ) ˜ I (τ) − µ ˜ I 
(x | σ)( )4

dτ
−∞

∞

∫
= G(σ, x − τ) ˜ I (τ)( )4

dτ
−∞

∞

∫ − 4µ ˜ I 
(x | σ) G(σ,x − τ) ˜ I (τ)( )3

dτ
−∞

∞

∫
+6 µ ˜ I 

(x | σ)( )2
G(σ, x − τ) ˜ I (τ)( )2

dτ
−∞

∞

∫ − 4 µ ˜ I 
(x | σ)( )3

G(σ, x − τ)˜ I (τ)dτ
−∞

∞

∫
+ µ ˜ I 

(x | σ)( )4
G(σ, x − τ)dτ

−∞

∞

∫
= G(σ,x) ⊗ ˜ I (x)( )4

−4µ ˜ I (x | σ) G(σ, x) ⊗ ˜ I (x)( )3 
 

 
 +12 µ ˜ I (x | σ)( )2

G(σ, x) ⊗ ˜ I (x)( )2 
 

 
 

+16 µ ˜ I 
(x | σ)( )4

− 6 µ ˜ I 
(x | σ)( )2

G(σ,x) ⊗ ˜ I (x)( )2 
 

 
 + 5 µ ˜ I 

(x | σ)( )4

= G(σ,x) ⊗ ˜ I (y)( )4

− 4µ ˜ I 
(x | σ)µ ˜ I 

(3) x | σ( )

−6 µ ˜ I 
(x | σ)( )2

G(σ, x) ⊗ ˜ I (x)( )2 
 

 
 + 6 µ ˜ I 

(x | σ)( )4

− µ ˜ I 
(x | σ)( )

4

= G(σ,x) ⊗ ˜ I (x)( )4
− 4µ ˜ I 

(x | σ)µ ˜ I 

(3) x | σ( )− 6 µ ˜ I 
(x | σ)( )2

µ ˜ I 

(2 ) x | σ( ) − µ ˜ I 
(x | σ)( )4

(4-15)

The fourth central moment is demonstrated visually through its pulse transfer function
across a range of pulse widths in Figure 4.7.
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Figure 4.7.  1D Pulse transfer function of µP (d,x)
(4) (x | σ)  with σ = 1.  From left to right: d = 1,

d = 2, d = 4, d = 8.  Note the difference in spatial and intensity ranges in each plot.

The function µP(d,x)
(4) (x | σ) has a response similar to the square of the scale-space

curvature or second derivative measure of a pulse stimulus (e.g., in 1D the square of the
multiscale curvature of a pulse P(d,x) is ( ∂2

∂x2 P(d, x | σ))2 = ( ∂2

∂x2 G(σ, x) ⊗ P(d,x))2 ).  At

relatively large apertures the two curves take on similar properties.  The two functions are
compared in Figure 4.8.

   

   

Figure 4.8.  Comparison of µP (d,x)
(4) (x | σ)  with σ = 1 to ( ∂2

∂x2 P(d, x | σ))2
 with σ = 1.  Top

row, µP (d,x)
(4) (x | σ) .  Bottom row: ( ∂2

∂x2 P(d, x | σ))2
.  From left to right:  d = 1, d = 2, d =

4, d = 8.  Note the difference in spatial and intensity ranges in each plot.

4.3.4.  Invariance with respect to linear functions of intensity

As specified before, the selection of the Gaussian distribution as the sampling kernel was
motivated by a desire for the sampling filter to be invariant with respect to particular
transformations of x.  It may be desirable to analyze the sampled measurements of the
array of ˜ I (x) values in dimensionless units (i.e., invariant with respect to certain

transformations of ˜ I ).  The dimensions of thethe third and fourth central moments shown
above are subject to exponentiation by the order of the moment calculation.
Dimensionless measurements may be obtained by normalizing the central moments with
powers of the square root of v0, the variance of the input noise (if known).  The resulting
measures are described as skewness and kurtosis.  Their local manifestations, given a
sampling aperture σ, are defined as

Local Skewness:  γ ˜ I 

3( ) (x | σ) =
µ

˜ I 

3( ) (x | σ)

v0( )3 (4-16)
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Local Kurtosis:  γ ˜ I 

4( ) (x | σ) =
µ

˜ I 

4( ) (x | σ)

v 0( )4 (4-17)

In the normalizations shown above, v0 is used rather than the calculated second
central moment µ ˜ I 

(2 )(x | σ).  In the case where the neighborhood about a pixel is

contiguous and ergodic, µ ˜ I 

(2 )(x | σ) can be used.  However, under the piecewise ergodic

assumption, discontinuities introduce bias into the value µ ˜ I 

(2 )(x | σ), making it a poor

estimate of v0 where boundary conditions exist. This suggests a different form of
multiscale statistical analysis to overcome this bias.  Directional analysis methods that
deemphasize the bias in multiscale central moment calculations introduced by local image
geometry is the topic of Chapter 5.

4.4.  Other Multiscale Central Moments

The general form for the multiscale central moment of order k of ˜ I (x) is given by

µ ˜ I 

(k) (x | σ) = ˜ I (x) − µ ˜ I 
(x | σ)( )k

;σ

= G(σ,x)⊗ ˜ I (x) − µ ˜ I (x | σ)( )k

= G(σ, x − τ) ˜ I (τ) − µ
˜ I 
(x | σ)( )k

dτ
−∞

∞

∫
(4-18)

Although higher moments than the fourth central moment may be also of interest, the
remainder of this discussion will address the nature of scale, noise and extensions of this
concept of moments to multiple dimensions as well as to images containing multiple
values per pixel.

4.5.  Characteristics of Multiscale Image Statistics

It is important to recognize multiscale image statistics as central moments of the local
probability distribution of intensity values taken from the neighborhood about a pixel
location.  Given the ensemble of all orders of these central moments, it is possible to
reproduce the statistical behavior of the input signal and its noise properties at a particular
location x in the image ˜ I (x).  These moments also capture some information of the local
image geometry.

Multiscale image statistics may be illuminated by contrasting them with other image
processing concepts.  Such comparisons can lead to deeper insights into the nature of
multiscale central moments of intensity.

4.5.1.  Multiscale Statistics vs. Difference of Gaussian Operators

A cursory glance at the mathematical form for the k-th order multiscale central moment
of intensity in equation (4-18) might falsely suggest that these moments are simply a form
of contrast measurement by a difference of two Gaussian operators (DoG) raised to the k-
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th power.  There are some crucial differences between an exponentiated difference of
Gaussian operation and the multiscale central moments described above.

In difference of Gaussian processing, an image is convolved with two Gaussian
operators of differing aperture.  The two filtered images are then subtracted to produce a
resultant image that emphasizes boundary information within the original image.  The
process of filtering an image via a difference of Gausian operator and raising the result to
the k-th power is formally described as follows:

DoG ˜ I (x);σa , σb( )( )k

= G(σ b ,x) ⊗ ˜ I (x)( )− G(σ a ,x) ⊗ ˜ I (x)( )( )k

= G(σb ,x − τ) ˜ I (τ)( )dτ
−∞

∞

∫ − G(σa , x − ν) ˜ I (ν)( )dν
−∞

∞

∫ 
 

 
 

k

(4-19)

To simplify the comparison, equation (4-18) can be further simplified to the following
expression.

µ ˜ I 

(k) (x | σ) = G(σ,x) ⊗ ˜ I (x) − µ ˜ I 
(x | σ)( )k

= G(σ,x − τ) ˜ I (τ) − G(σ,x − ν)˜ I (ν)dν
−∞

∞

∫ 
 

 
 

k

dτ
−∞

∞

∫
(4-20)

Contrasting equation (4-19) and equation (4-20), their differences are immediately
apparent.  The DoG operation has two separate aperture parameters that govern its
behavior where multiscale statistics use a single aperture.  A more important distinction is
the association of the exponential term.  In a difference of Gaussian image raised to the k-
th power, the difference of two filtered signals is exponentiated.  In multiscale statistics
the difference between the original input image and a filtered image is taken before being
exponentiated and then filtered.  Since convolution is a weighted summation process,
exponentiated unsharp masking and multiscale statistics may be distinguished as follows:
the exponentiated difference of Gaussian process is a power of the difference of two
weighted sums.  Multiscale central moments of intensity are weighted sums of an
exponentiated difference.  More simply, this is another example where the square of the
sums does not equal the sum of the squares.

To illuminate the difference between these two forms of image measurement, a
comparison between variance and the square of the DoG response to a pulse input is
shown in Figuire 4.9.  Two different aperture selections are shown for the DoG filter.
These results demonstrate that the response of the DoG filter is sensitive to the selection
of the aperture size parameters.
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a. b. c.

Figure 4.9.  Comparisons of µP (d,x)
(2) (x | σ)  with DoG(P(d,x); σa, σb).  The input function is a

pulse P(d,x) with d = 1. a.  µP (d,x)
(2) (x | σ)  with σ = 1, b.  DoG(P(d,x); σa, σb) with σa = σ b

2 ,

σb = 1,  and c.  DoG(P(d,x); σa, σb) with σa = 0, σb = 1

4.5.2.  Multiscale Moments of Intensity vs. Moment Invariants of Image Functions

The unmodified term “central moment” is ambiguous when taken in the context of image
processing.  There is a family of methods for image analysis describing image geometry
that includes the concepts of moments and central moments.  These measurements are
distinct from the concept of statistics of local image intensities.

Hu introduced the family of moment invariants, taking advantage of the moment
theorem that provides a bijection from derivatives in image space to moments in
frequency [Hu 1962].  In 1D the calculation for computing the regular moment mk

moment of image continuously differentiable function ˜ I (x) is shown in equation (4-21).

mk = τk ˜ I (τ)dτ
−∞

∞

∫ (4-21)

To compute central moments, the spatial index of integration τ is offset to the image
centroid calculated in 1D as m1

m0( ).  Central moments m(k) of the input image ˜ I (x) are

defined as

m(k) = (τ − m1
m0 )

k ˜ I (τ)dτ
−∞

∞

∫ (4-22)

It is possible to postulate the existence of m(k)(x|σ), a multiscale locally adaptive version
of these moment invariants.  Using a Gaussian as the neighborhood function and using a
normalization consistent with the moment theorem, the formalization of multiscale
locally adaptive moment invariants becomes

m(k ) (x | σ) = e− τ 2σ2

(τ − m1
m0 )

k ˜ I (τ)dτ
−∞

∞

∫ (4-23)

From these basic equations it is clear that moment invariants and multiscale image
statistics are very different.  Moment invariants are applied in the spatial domain while
image statistics are applied in the intensity domain.  Moment invariants capture
information about image geometry; the Taylor reconstruction of the infinite set of central
moments of the image function yields the original image ˜ I (x).  Multiscale image
statistics capture information about the histogram of pixel values within an image; the
Taylor reconstruction of the infinite set of central moments of intensity generates the
probability distribution function of ˜ I (x).
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4.6.  Measurement Aperture, Object Scale, and Noise

How does the error associated with the additive noise propagate through multiscale image
statistics?  In particular, how does noise affect the calculation of the local variance or
second central moment?  What is the relationship between noise and image geometry?

Assume an image function with additive, zero-mean, Gaussian distributed, spatially
uncorrelated, “white” noise ˜ I (x) = (I(x) + ˜ u (x)) where ˜ u (x)  is a random variable with
zero mean, variance of v0, and no spatial correlation.  That is, ˜ u (x)  ~ N(0,v0).  Also,
˜ u (x 0 ) and ˜ u (x1)  are Gaussian distributed, zero-mean, independent, identically distributed

random variables for all spatial coordinates x0 ≠ x1.  Let the scale-space representation of
˜ I (x) where σ is the scale or measurement aperture be ˜ I (x | σ) = G(σ,x) ⊗ (I(x) + ˜ u (x)).

Consider M(µ ˜ I 

(2)(x | σ)) = µ ˜ I 

(2) (x | σ) , the mean of the local variance µ ˜ I 

(2)(x| σ) .

Applying the calculus of expected values to µ ˜ I 

(2)(x| σ)  generates the following expression.

M(µ ˜ I 

(2)(x | σ)) = G(σ, x) ⊗ (˜ I (x))2 − (G(σ,x) ⊗ ˜ I (x))2

= G(σ, x) ⊗ (˜ I (x))2 − (G(σ,x) ⊗ ˜ I (x))2

= G(σ,x)⊗ (I(x))2 + 2 G(σ,x) ⊗ I(x)˜ u (x)

+ G(σ,x) ⊗ (˜ u (x))2 − (G(σ,x) ⊗ I(x))2

−2 (G(σ,x) ⊗ I(x))(G(σ,x) ⊗ ˜ u (x)) − (G(σ,x) ⊗ ˜ u (x))2

= G(σ,x) ⊗ (I(x))2 + 0 + (˜ u (x))2 − (G(σ,x) ⊗ I(x))2 − 0 − 1
2σ π

(˜ u (x))2

(4-24)

Since the variance of ˜ u (x)  is defined to be v0, equation (4-24) simplifies to the following
expression.

M(µ ˜ I 

(2)(x | σ)) = G(σ,x) ⊗ (I(x))2 − (G(σ, x) ⊗ I(x))2 + 1− 1
2σ π( )v0 (4-25)

4.6.1.  Noise Propagation in Multiscale Statistics of an Ergodic Process

Increasing the aperture of the multiscale statistical measurement operator improves the
measurement by decreasing the variance of the reported value through spatial averaging.
This trend holds as long as discontinuities in the image are not encountered.  In the
absence of discontinuities, that is, with an image that is a sample of a complete ergodic
process, the relationship between scale and variance can be studied.

Let I(x) be a constant function (i.e., let I(x) = c).  Then ˜ I (x) is ergodic.  With a
constant expected value across the image, multiscale statistics reflect the ergodic
properties of the image as scale increases.  In other words, there is a satisfying
correspondence between the scale of the multiscale central moment of intensity  operator
and the measurement interval described in the definitions of ergodicity described in
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equations (4-4) and (4-5).  Specifically, it can be shown that multiscale statistics can be
used to demonstrate mean-ergodicity using the following two relations.

µ ˜ I 
(x | σ) = G(σ, x) ⊗ ˜ I (x) σ→ ∞ →    µ I (x) = c (4-26)

Consider V µ ˜ I (x | σ)( )= µ ˜ I (x | σ) − (G(σ,x) ⊗ I(x))( )2

, the variance of µ ˜ I 
(x | σ).

V µ ˜ I 
(x | σ)( )= V G(σ,x) ⊗ ˜ I (x)( )= 1

2σ π v0 σ→ ∞ →    0 (4-27)

Equation (4-27) shows how µ ˜ I 
(x | σ) converges to I(x) as a function of the initial

variance v0 and scale σ.  The relationship in equation (4-27) is derived in Chapter 3.

Using multiscale statistics, it is also possible to show that ˜ I (x) is variance-ergodic.
Moreover, a closed form for the convergence of the local variance measure µ ˜ I 

(2)(x| σ)  can

be derived.  Consider the expected value of the local variance given a constant function
I(x).

M µ ˜ I 

(2)(x | σ)( )= G(σ,x) ⊗ I(x)( )2 − G(σ,x)⊗ I(x)( )2 + 1 − 1
2σ π( )v0

= G(σ,x) ⊗ c2 − G(σ,x) ⊗ c( )2 + 1− 1
2σ π( )v0

= G(σ,τ)c2dτ
−∞

∞

∫ − G(σ,τ)c dτ
−∞

∞

∫ 
 

 
 

2

+ 1− 1

2σ π( )v0

= c2 G(σ, τ)dτ
−∞

∞

∫ − c G(σ,τ) dτ
−∞

∞

∫ 
 

 
 

2

+ 1 − 1
2σ π( )v0

= c2 − c2 + 1 − 1
2σ π( )v0

= 1 − 1
2σ π( )v0 (4-28)

Equation (4-28) implies that as scale increases the expected value of the multiscale
variance approaches a constant value.

M µ ˜ I 

(2)(x | σ)( )= 1 − 1
2σ π( )v 0

σ → ∞
 →      v0 (4-29)

As scale decreases, µ ˜ I 

(2)(x| σ)  becomes unstable.  If σ < 1
2π , µ ˜ I 

(2)(x| σ)  is negative, an

undesirable attribute for a measure of the variance of a random variable.  However, in the
context of discrete statistics, it is consistent with an attempt to compute central moments
from small numbers of discrete samples.  It is impossible to generalize statistics of a
population from a single sample.  Estimating statistics from a fraction of a sample can
yield nonsensical negative values for variance and for all even order moments.
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4.6.2.  Noise Propagation in Multiscale Statistics of a Piecewise Ergodic Process

Most images are not ergodic in the strict sense; they contain discontinuities or boundaries
denoting separate regions and objects within the image.  If an image is a sample of a
piecewise ergodic process, it is not possible to increase the aperture of a measurement
operator to infinity without introducing bias from object boundaries.  This section extends
the previous discussion on the interaction between scale and noise to include boundary
information.

Consider the simplest piecewise ergodic 1D image, a step function.  Unlike the earlier
pulse transfer function examples which were chosen to reflect the symmetry of the
multiscale statistical operators, this example uses a single step.  The mathematics are
more easily presented and the effects of the discontinuity remain clear with this type of
input function.

Let I(x) be a step function T(h, x), such that ˜ I (x) = T(h,x) + ˜ u (x)( )  where

T(h,x) =
0 if x < 0

h if x ≥ 0
 
 
 

(4-30)

The shape of this threshold step function is portrayed in Figure 4.10.

0

h
x

Figure 4.10.  Test function T(h,x)

The following two relations follow.

µT(h,x) (x | σ) = G(σ,x) ⊗ T(h, x) = (h) erf( x
σ 2 )

and (4-31)
G(σ, x) ⊗ T(h, x)( )2 = (h 2 ) erf ( x

σ 2 )

Inserting (4-31) into equation (4-25) yields a closed form for M(µ ˜ I 

(2)(x | σ))  that is

dependent on scale σ, height of the step function h, the initial variance v0 of u(x), and
proximity to the discontinuity expressed by erf ( x

σ 2
) .

  

M(µ ˜ I 

(2)(x | σ)) = (h2 ) erf(
x

σ 2 ) − (h) erf(
x

σ 2 )( )2

relative proximity
1 2 4 4 4 4 4 3 4 4 4 4 4 

+ 1 − 1
2σ π( )v0

noise
1 2 4 3 4 

(4-32)

There are essentially two components to the formal expression for M(µ ˜ I 

(2)(x | σ)) :  (1)

a term that measures the proximity of the boundary relative to the measurement aperture
and (2) a term that reflects the estimate of the variance of the intensity distribution.  These
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two terms must be balanced.  As scale σ increases, the relative distance to the boundary
decreases, so to reduce the influence of the bias introduced by the nearby step edge, a
small measurement aperture is desired.  However, the noise term is not defined for very
small scale σ.  To achieve the best estimate of the variance of ˜ I (x), a large aperture is
desired.  This tradeoff can be resolved if the position of the boundary is known a priori; a
scale can be selected to deemphasize the bias from the step edge while estimating the
variance of the local image intensities.

These results suggest a scale-space approach to measuring the variance within an
image in the absence of a priori boundary information.  For an arbitrary image ˜ I (x), a
continuously varying scale-space representation of µ ˜ I 

(2) (x | σ) is easily generated.  In

large contiguous regions, larger and larger measurement apertures may be used to
measure the variance of the noise within the region.  Near object boundaries, smaller
apertures are required.  When boundaries begin to affect the response of µ ˜ I 

(2) (x | σ) as

scale increases, we can be sure that the value is being dominated by the relative proximity
term.  Thus by analyzing the variance of the multiscale mean operator ∂

∂σ (µ ˜ I 

(2) (x | σ)).

through scale, minima in the multiscale variance response can be isolated.

4.7.  Multiscale Statistics of 2D Images

Extending the construction of multiscale statistics to images of two dimensions is
straightforward.  For this work the central moments are constrained to be invariant with
respect to rotation as well as translation.  These constraints specify an isotropic Gaussian
as the sampling kernel given by

G(σ,p) = 1

2πσ2 e
−

p 2

2σ2

(4-33)

where p = [px, py].

4.7.1.  Multiscale 2D Image Mean

The multiscale 2D image mean is a local weighted average of image values.  This
measurement can be expressed as a convolution of the image with a 2D Gaussian kernel.

µ ˜ I 
(p|σ) = ˜ I (p);σ = G(σ,p) ⊗ ˜ I (p)

= 1
2πσ2 e

−
((px −τ )2 + (py − ν)2 )

2σ2
˜ I ([τ,ν])dτ

−∞

∞

∫ dν
− ∞

∞

∫
(4-34)

4.7.2.  Multiscale 2D Image Variance

The multiscale 2D image variance measurement, like the multiscale 2D image mean,
generalizes easily from the 1D case.
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µ ˜ I 

(2) (p | σ) = ˜ I (p) − µ ˜ I 
(p | σ)( )2

;σ

= G(σ, p) ⊗ ˜ I (p) − µ ˜ I 
(p | σ)( )2

= G(σ, p) ⊗ ˜ I (p)( )2
− µ ˜ I 

(p | σ)( )2

(4-35)

4.7.3.  Other Multiscale 2D Image Statistics

The general form for the k-th multiscale central moment for 2D images is

µ ˜ I 

(k) (p | σ) = ˜ I (p) − µ ˜ I 
(p | σ)( )k

;σ

= G(σ,p) ⊗ ˜ I (p) − µ ˜ I 
(p | σ)( )k

= 1
2 πσ2 e

−
(( px− τ )

2 +(py − ν)
2

)

2 σ2 ˜ I ([τ, ν]) − µ ˜ I 
(p | σ)( )k

dτ
−∞

∞

∫ dν
−∞

∞

∫

(4-36)

4.7.4.  Some 2D Examples of Multiscale Image Statistics

The equations of section 4.6 suggest that the height of the step edge found at a boundary
as compared with the variance of the initial input signal is a critical element in image
analysis.  In the examples presented in this chapter, the term signal to noise ratio (SNR)
will refer to the difference of the foreground intensity and the background intensity
divided by the standard deviation of the additive spatially uncorrelated noise.  The pixel is
the atomic image element, so the additive noise and consequently the relative
measurement of noise to signal is expressed as the SNR per pixel.  Figure 4.11 shows a
noisy computer generated image of a teardrop shape.  The measured SNR per pixel within
that image has been set to 4:1 on a raster resolution of 128 x 128 pixels.

Figure 4.11.  A 128 × 128 pixel Teardrop with Signal to Noise of 4:1

The images of Figure 4.12 are four local statistical measurements made of the
teardrop using an aperture whose spatial aperture is 3 pixels wide.  Figure 4.12a shows
the local mean values.  Figure 4.12b shows the measured local variances.  Figure 4.12c
shows local skewness.  Figure 4.12d shows local kurtosis.
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a. b. c. d.

Figure 4.12.  Local statistical measures of the teardrop from Fig. 4.11.
(a:  local means, b: local variance, c:  local skewness, d:  local kurtosis)

The important aspects of Figure 4.12 are that the multiscale statistical representations
are significant with respect to image processing tasks.  The local mean image is simply a
multiscale measurement of the intensity values within the image.  The variance image
reflects edge strength and is analogous to the squared multiscale gradient magnitude of
intensity.  The local skewness measurement has a locus of zero crossings along the
boundary of the teardrop shape.  This behavior is similar to the response from applying
the Laplacian of the Gaussian as a filter kernel to the same image.

4.8.  An Application:  Statistical Nonlinear Diffusion

A primary early focus of this research was automatic parameter selection for nonlinear
diffusion functions.  An extension beyond isotropic diffusion as an analytical tool is the
notion of multiscale nonlinear or Variable Conductance Diffusion (VCD)[Whitaker
1993ab].  The work of Whitaker is preceded by the concepts of “anisotropic diffusion,”
an analytical process where images are often treated at pixel resolution [Perona 1990].
Other early work in segmentation by fixed-scale nonlinear diffusion has been pursued by
Mumford and Shah [Shah 1991].  The fixed inherent scale of these early processes
generate instabilities arising from noise with high spatial frequency.  The multiscale
properties of VCD allow it to perform smoothing operations in the presence of noise
while preserving boundary information inherent in the image.

The control of VCD systems has often been difficult; the nature of the diffusion
parameters are only partly understood.  Seemingly insignificant changes in control
constants can drastically modify the behavior of the image as the nonlinear diffusion
process progresses.  The VCD process as well as the properties of the noise contained
within the image can be studied through statistical pattern recognition.  Traditional
statistical pattern recognition is performed at the maximum outer scale of the image,
where histograms and clustering are analyzed across the entire range of observed pixels
[Duda 1973].  As suggested in section 4.6, multiscale statistical analysis illuminates
elements of the relationship between scale and object shape.  By using critical values
revealed in the analysis, images may be reconstructed at “natural” boundaries, accounting
for the size and shapes of the objects within the image.

To achieve boundary preserving smoothing and nonlinear multiscale image analysis,
Whitaker used the following diffusion equation with a boundary measuring conductance
function.
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∂I(p, t)

∂t
= ∇ • g ∇I(p, t);σ(t)( ) ∇I(p, t);σ(t)( )( )

and (4-37)

g ∇I(p, t);σ(t)( )= e
−

∇I(p,t) ;σ (t) 2

k2

The control parameter k is the conductance parameter and it remains constant.  It controls
the rate of the variable conductance given a perceived intensity gradient at aperture σ(t).
The aperture G(σ(t),p) is a Gaussian sampling kernel whose scale or aperture, σ(t) is
monotonically decreasing with time t.

Conductance should be relative to the probability that the perceived intensity gradient
is either noise or an object boundary [Perona 1990].  Boundariness is thus measured using
the gradient magnitude normalized by the standard deviation of the noise process.  In
particular, Gerig suggested that the standard deviation be estimated from the whole image
and used as the control parameter k used in the conductance equations shown in equation
(4-37).  In his application of VCD, Gerig uses a grid to sample patches, typically
8 × 8 pixels square, of an image, seeking the mean and variance of the sample population
of 64 pixel intensities.  The intensity histogram of the whole image is divided into
subranges, and the variances of the grid squares whose means fall within the same
subrange are compared.  The minimum variance of comparable grid squares are then
evaluated, and two variances, corresponding to noise in background and noise within
objects, are extracted to be used as normalizing parameters in intensity gradient
measurement  [Gerig 1992].

While these methods generate useful measures of the noise process within an image,
they are based on non-overlapping square partitions of the image.  The scale of the
sample grid is also fixed and not relative to the scale of the underlying objects.  Through
a multiscale approach, the scale of the variance and mean measurements can be made
invariant with respect to the Cartesian coordinates of the image and invariant with respect
to changes in object scale.  Moreover, the largest scale reflecting a piecewise ergodic
region may be used to provide the best measure of the probability distribution of noise
within the region.

Work performed early in this research has yielded encouraging results  [Yoo 1993,
1994].  Using the local statistical analysis presented in this chapter, a modification of the
Whitaker VCD method has been developed.  By analyzing the images with the local
statistical operators of variance and means, a local measure of the SNR may be made in a
spatially adaptive fashion.  The sample aperture may be controlled by seeking scale
values where changes in local variance are relatively insensitive to changes in aperture
size.  This process selects the largest scale where noise may be accurately estimated
without the interference of intensity gradients introduced by boundaries.  These
arguments suggest replacement of σ(t) with σ(I(p,t)) where

σ I(p, t)( )⇒
∂µ I

(2) p, t | σ( )
∂σ

= 0 (4-38)
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This in effect allows the best estimate of both the mean intensity as well as the variance
of the noise. In practice, a zero value is never achieved, so a small threshold is used to
select values of σ that represent local minima of noise.

Given σ(I(p,t)), we can compute µ I
(2) p, t| σ I(p, t)( )( ), the local variance at the optimal

measurement scale.  Gradient measurements are normalized with the expected noise
distribution.  That is, the conductance parameter k is replaced with the measured
variance, making the conductance function

g ∇I(p, t);σ I(p, t)( )( )= e
−

∇I(p ,t );σ I(p,t )( )
2

µI
(2) p, t|σ I(p, t )( )( )

(4-39)

Figure 4.13 shows a test object used to evaluate VCD systems.  The object reflects
features of differing scale, with the connecting bar between the two circles often dropping
out during isotropic analysis.

Figure 4.13.  A test object.  The figure contains structures at different scale.  The raster
resolution of the object is 128 x 128 pixels.

Figure 4.14 shows the results of the modified VCD system on the object shown in
figure 4.13 with SNR of 1:1 on a 128 × 128 raster grid.  Through modified VCD, no
individual parameters were set for the image.  Instead, measurement aperture was selected
at each iteration for optimal estimation of mean and variance values.

 
Figure 4.14.  Results from the modified multiscale statistical approach to VCD (left:  initial
image, right: after 75 iterations of VCD)

A weakness of the current implementation is that it can get trapped in local minima as
the multiscale variance measurement varies across scale.  The patchwork appearance of
the output image in Figure 4.14 is due in part to the algorithm getting stuck in a local
minimum in scale rather than selecting a larger scale in the large contiguous regions of
the background.  However, the results are still encouraging since they represent automatic
parameter selection for VCD.

Another weaknesses in this implementation foreshadows the developments of the
next chapter.  It is impossible to obtain a good estimate of the signal to noise ratio near
object boundaries since the bias introduced by the geometry of the image dominates the
multiscale statistical measurement.  Chapter 5 introduces the acquisition of directional
second moment values.  Singular value decomposition generates the major and minor
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axes, the directions in which the greatest and the least variance are measured given a scale
σ.  The resulting variance measured in the minor axis direction is likely to be a less
biased measure of the local noise than the isotropic µ I

(2) (p | σ)  statistic.  Isophote
curvature still introduces some bias, but an investigation of these properties is the topic of
Chapter 5.

4.9.  Multiscale Statistics of Multivalued Images

There are many sources of real data containing multiple values per pixel.  The easiest
means of manipulating these data is to invoke the language and tools associated with
vector calculus, casting each pixel containing n elements as an n-element vector.

In many cases, the data values at each pixel are incommensurable.  That is, they lack
common basis for comparison.  For instance, registered multimodal medical images
containing both CT and MRI information, while extremely valuable, have little
correspondence between the brightness and contrast at individual pixel locations.  There
is no basis for casting pixels as vectors since there is no useful distance metric to measure
the norm of each vector.  Even strongly related data are often not commensurable.
Multiple echoes of MR images and even the separate color channels of color images are
not commensurable.

However, statistical measurements of multiple incommensurable values per pixel can
be made, and meaningful results can be drawn.  Statistical methods enable the tracking of
correlations among the multiple values, as well as detecting shifts or derivatives in these
correlations.  Moments and joint moments of image intensity distributions provide
invariants that illuminate and normalize incommensurable values and make possible
linear image processing methods with multivalued data.

4.9.1.  The Multiscale Multivalued Mean

To extend the view of multiscale statistics presented in this chapter to images that have
more than one value per pixel, first consider a two-valued image as an ordered pair of

values at each location ˜ I (x) = ˜ I 1(x),˜ I 2(x)( ) where x ∈ R1.  The following discussion may

be generalized both to higher dimensions and to images of more than two values per
pixel.  For clarity and brevity, this presentation is limited to images of one dimension and
two values per pixel.

The multiscale multivalued mean of ˜ I (x)  is an ordered pair the multiscale means of
the individual values.

µ ˜ I (x|σ) = µ ˜ I 1
(x| σ),µ ˜ I 2

(x| σ)( ) (4-40)

4.9.2.  Multiscale Multivalued Joint Moments

In the case of data containing multiple values the joint distribution must be considered.
Consequently the distribution is uniquely defined by the set of its joint moments (see
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Chapter 2).  The general form for the measurement of multiscale joint moments is given
by

µ ˜ I 

( j,k) (x | σ) = ˜ I 1 (x) − µ ˜ I 1
(x | σ)( )j

˜ I 2 (x) − µ ˜ I 2
(x | σ)( )k

; σ

= G(σ,x) ⊗ ˜ I 1 (x) − µ ˜ I 1
(x | σ)( )j

˜ I 2 (x) − µ ˜ I 2
(x | σ)( )k 

 
 
 

(4-41)

4.9.3.  Multiscale Multivalued Variance

The second moment of a multivalued function deserves further illumination since it is so
prominent in the literature and in image processing algorithms.  Collectively, there are
three joint moments that comprise the second moment or variance of a two valued image.
They are µ ˜ I 

(2,0) (x | σ) = µ ˜ I 1

(2) (x | σ), µ ˜ I 

(0,2) (x | σ) = µ ˜ I 2

(2) (x | σ), and µ ˜ I 

(1,1) (x | σ).

An alternate representation for the second moment of a multivalued function is to
arrange these three individual moments in a symmetric matrix, called the covariance
matrix.

µ ˜ I 

(2,0) (x | σ) µ ˜ I 

(1,1) (x | σ)

µ ˜ I 

(1,1) (x | σ) µ ˜ I 

(0,2) (x | σ)

 

  
 

  (4-42)

This matrix is invariant with respect to spatial rotation and translation of the image.  This
matrix is also invariant with respect to the addition of a constant intensity to either of the
image values.  It is not invariant with respect to multiplication of the intensities with a
constant coefficient.

Another important invariant is the correlation coefficient.  This value is calculated by

r ˜ I 
(x | σ) =

µ ˜ I 
(1,1) (x | σ)( )

µ ˜ I 
(2,0) (x | σ)µ ˜ I 

(0,2) (x | σ)
(4-43)

The correlation coefficient r ˜ I 
(x | σ) is invariant with respect to spatial rotation and

translation of the image, and it is also invariant with respect to linear functions of
intensity applied to either of the image values.  Note that −1 ≤ r˜ I 

(x | σ) ≤ 1.

Finally, the covariance matrix may be normalized in a fashion similar to r ˜ I 
(x | σ).  If

the entire matrix is divided by a scalar, the root of the product of the diagonal elements
the matrix simplifies to
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µ ˜ I 

(2,0) (x | σ)

µ
˜ I 

(0,2) (x | σ)
r˜ I 

(x | σ)

r˜ I 
(x | σ)

µ ˜ I 

(0,2) (x | σ)

µ ˜ I 

(2,0) (x | σ)

 

 

 
 
 
 

 

 

 
 
 
 

(4-44)

This normalized covariance matrix  exhibits the same invariances as the correlation
coefficient.  Its determinant is guaranteed to be between 0 and 1, inclusive.

4.9.4.  Multiparameter VCD, a foreshadow of future work

Section 4.8 describes statistically controlled nonlinear diffusion for scalar images.  The
parameters controlling the nonlinear process are automatically selected using a scale-
space analysis.  The generalization of nonlinear diffusion to multivalued images is an
important field of research today and is a likely application area for multiscale statistics.

Gerig and Whitaker both have generalized some forms of VCD to higher dimensions.
Gerig has demonstrated vector-valued nonlinear diffusion on medical images with some
success [Gerig 1992].  Whitaker has shown that invariants other than zeroth order
intensities can be diffused; his resulting geometry limited diffusion has been able to
generate ridge structures that describe the general form of objects within images
[Whitaker 1993ab].

There are sources of data where the concept of vector valued diffusion does not apply
because the different within-pixel values are incommensurable.  An example of such data
include environmental data such as levels of pollutants (measured in parts per million)
and average wind velocity (measured in miles per hour).  Demographic data also
comprise a significant body of multivalued data that are not representable as vectors (e.g.,
census information reflecting local per capita income (in dollars per annum) and
education level (in years of secondary and post secondary schooling).  Registered
multimodal medical datasets also represent an important type of data where the multiple
values within a pixel do not have common units, origins, or noise properties.  These types
of data exhibit spatially dependent variables, but the values measured in any location are
only loosely correlated.  A pixel is therefore not a vector.  However, the correlations
among the values within a pixel may be of greater interest than the individual values
themselves.

Early research related to this dissertation suggested how statistics can be applied to
VCD in multivalued images, in particular those produced by medical magnetic resonance
scanners.  The technique where the idea was first developed had as its objective the
incorporation of correlations of image intensities into VCD and was based on
measurements of the dissimilarity of multivalued intensities through normalized distance
measures in the multivalued histogram.  Covariances among the multiple values within a
pixel were calculated from user-supplied canonical pixels.  The covariances were
employed in the control of a nonlinear diffusion process.  Specifically, in this process the
user was asked to supply locations denoting sets pixel values characteristic of one or
more desired image segments.  Each individual set of pixels was used as a sample of the
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population of image intensities within that particular segment.  Central moments of each
sample population were computed, and a multivalued probability distribution was
modeled for each pixel set.  Mahalanobis distances from individual pixel values to the
surrounding probability distributions were then used as metrics of pixel similarity.  The
resulting method was applied at varying scale and performed reasonably well at reducing
noise while preserving boundary information in multivalued magnetic resonance images
[Yoo 1993].

Figure 4.15 shows the results of a user supervised VCD method to filter, segment and
classify multivalued data.  The individual data values exhibit significant noise, whose
standard deviation is significantly greater than the difference between the mean
background and mean foreground intensities of the objects.  However, the values within
each pixel exhibit a strong negative correlation.  As such, that correlation can be
employed in a similarity measure and used to diffuse the intensity values.  As a result, the
outcome is a clearly identifiable object of constant intensity on a constant intensity
background.  Figure 4.15a shows from left to right, both input image values and their
corresponding scatterplot histogram.  Figure 4.15b shows the image after processing with
VCD, both values from left to right and the subsequent scatterplot histogram.  Note the
differences in the scatterplots.  In the input histogram, there is little discernible separation
between the two clusters, but the correlation is clear.  In the histogram of Figure 4.15b,
the clusters are easily seen, and their separation is possible with a linear discriminant with
greatly reduced error.

a.

b.

Figure 4.15.  Early work in statistically driven multivalued VCD.  A synthetic multivalued
image where the values are subject to significant Gaussian white noise and with a strong
negative correlation between intensity values. (a) - original two valued input image and its
scatterplot histogram. (b) - image after processing with VCD and resulting histogram.

The example in Figure 4.15 demonstrates that the information contained in the value
of a pixel can be supplemented with information about the correlations among the values
within an individual pixel.  In the example above these correlations were obtained by
asking a user to identify representative pixels, one set for the foreground objects and one
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set for the background.  Statistics were calculated of the pixel sets and generalized to the
larger populations of background and foreground object pixels.  It is this idea that I
propose can be generalized to multiparameter images.

The next step is to use a scale-space analysis to adaptively select a measurement
aperture for each pixel location.  With an optimum aperture, correlations among the
multiple values can be estimated and automatic nonlinear diffusion of multivalued images
attempted.

4.10.  Summary and Conclusions

This chapter has explored the derivation of isotropic multiscale image statistics.  The
stochastic structure of images has been discussed, and the model of an image as a 2D
piecewise ergodic stochastic process has been adopted, upon which the mathematics and
analysis of these multiscale image statistics has been founded.

A complete family of multiscale central moments has been introduced here with the
properties that they (or their normalized relatives) are invariant under

(1) Rotation

(2) Translation

(3) Scale

(4) Linear Functions of Intensity

These moments were generalized to 2D images.  Multiscale variance has been
successfully applied in nonlinear smoothing algorithms using a scale-space analysis.
Finally, the family of multiscale central moments was generalized to multivalued images.


